The Electric Conductivity of the Molten Salt Systems HgI₂-BiI₃ and BiI₃-CdI₂

S. V. Mentus and M. V. Šušić

Institute of Physical Chemistry, Faculty of Sciences, Belgrade
Department of General and Physical Chemistry, Institute of Chemistry, Technology and Metallurgy,
Belgrade, SFR Yugoslavia

(Z. Naturforsch. 32 a, 1003-1006 [1977]; received April 19, 1977)

The specific electric conductivity of the molten solt systems $\mathrm{HgI_2\text{-}BiI_3}$ and $\mathrm{BiI_3\text{-}CdI_2}$ was studied in the temperature range $660-840~\mathrm{K}$. $\mathrm{BiI_3}$ exhibits a negative temperature coefficient of the conductivity within part of this temperature range and $\mathrm{HgI_2}$ within the entire range. The specific conductivity of the $\mathrm{HgI_2\text{-}BiI_3}$ system shows negative deviations from additivity for the $\mathrm{HgI_2\text{-}rich}$ mixtures and positive ones for the $\mathrm{BiI_3\text{-}rich}$ mixtures. In the $\mathrm{BiI_3\text{-}CdI_2}$ system positive deviations are encountered throughout the whole composition and temperature range investigated. An increase in temperature improves the additivity in both systems.

Introduction

Recent measurements of the temperature dependence of the orthobaric electric conductivity of molten salts (zinc- and cadmium iodides, stannous and cuprous chlorides, mercuric chloride and bromide ¹, mercuric and bismuth chlorides ², bismuth halides ³ and aluminium chloride ⁴) along with analogous investigations of lowmelting molecular liquids such as water ⁵, hydrogen chloride ⁶, ammonia ⁷, iodine trichloride and tribromide ⁸, point out that nonmetallic liquids exhibit a maximum of the orthobaric electric conductivity somewhere in the middle between the melting point and the critical point. The behaviour of mercuric iodide is exceptional as it shows a decrease in conductivity with increasing temperature throughout ⁹.

Numerous investigations have been reported on the electric conductivity of binary systems of molten salts, viz. ionic ¹⁰⁻¹³, ionic-molecular ¹⁴⁻¹⁹, and molecular ^{20, 21} salts. However, only a few studies are available on the electric conductivity of binary systems of molten salts over temperature ranges sufficiently wide for at least one of the components to pass to the region of negative temperature coefficients of conductivity. Here we may mention investigations of the systems HgCl₂-Hg₂Cl₂ and HgI₂-Hg₂I₂¹⁸, and of the systems HgBr₂-HgI₂ and HgI₂-SbI₃²¹. In the present work the electric conductivity of the liquid binaries HgI₂-BiI₃ and BiI₃-CdI₂ has been studied under orthobaric condi-

Reprint requests to Dr. S. Mentus, Institut za fizičku hemiju, Prirodno-matematički fakultet, 1100 Beograd/Yugoslavia.

tions over a temperature range in which BiI_3 undergoes a transitions from a positive to a negative temperature coefficient of the conductivity, while the coefficient for CdI_2 and HgI_2 is always positive and negative, respectively.

Experimental

Use was made of Merck analytical reagent grade chemicals previously dried at moderate temperatures in a vacuum of about 1 mm Hg. Because of the volatility of the salts the Pyrex cell with tungsten electrodes (Fig. 1) was filled at room temperature and then sealed under vacuum. The cell constants of the order $50~\rm cm^{-1}$ were determined with an accuracy

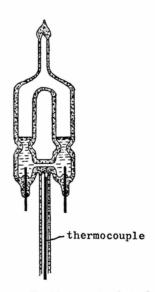


Fig. 1. The pyrex cell with tungsten electrodes.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

Table I. The specific electric conductivity \varkappa (ohnm⁻¹ cm⁻¹) of molten $\mathrm{HgI}_2\text{-BiI}_3$ at different molar fractions (\varkappa) of BiI_3 and temperatures T (K).

x = 0.02	×	x = 0.06	×	x = 0.22	×	x = 0.12	? ×		
696 772	1.95 1.90	667 679	3.81 3.75	666 681	1.21 1.22	678 689	6.82 6.35		
713 722	1.78	695 713	3.41 3.10	688 697	1.19 1.12	703 812	5.78 5.51		
740	1.68 1.51	723	2.90	712	1.07	725	5.30		
752 771	1.40 1.27	749 773	2.55 2.21	723 747	1.03 0.951	749 769	4.55 4.11		
789 812 824	1.15 1.00 0.92	808 820 834	1.76 1.67 1.53	754 782 800 812	0.901 0.822 0.750 0.698	778 797 808	3.99 3.38 3.52		
x=0.46		x = 0.52		x = 0.63	×	x=0.80) %	x=0.92	
	×	_	ж						×
663 696 728	$24.1 \\ 24.2 \\ 23.4$	679 693 723	25.8 25.8 24.9	672 708 730	28.0 28.1 28.0	680 702 723	28.5 29.1 29.8	678 688 698	28.5 29.0 29.3
734	23.2	756	24.3	749	27.8	743 769	29.8 29.5	713 730	30.5 31.0
743	23.0	783	23.5	772	26.5	103	29.3	100	01.0
		783 798 827 833	23.5 22.8 21.0 20.5	801 826	26.0 25.0	783 800 812	29.3 29.4 29.1 28.5	742 763 783	31.0 31.0 30.8

Table II. The specific electric conductivity \varkappa (ohm⁻¹ cm⁻¹) of molten BiI₃·CdI₂ at different molar fractions (\varkappa) of CdI₂ and temperatures T (K).

x=0.11	×	x = 0.20	×	x = 0.32	×	x = 0.44	×
600	0.334	685	0.347	706	0.382	714	0.394
690							
701	0.345	705	0.363	741	0.417	748	0.433
743	0.366	765	0.403	775	0.445	801	0.499
795	0.384	780	0.417	781	0.455	829	0.526
814	0.390	836	0.438	814	0.472		
840	0.400						
x = 0.68		x = 0.79		x = 0.90		x = 0.96	
T	×	T	×	T	×	T	×
681	0.350	690	0.334	682	0.295	679	0.269
733	0.432	704	0.368	689	0.312	705	0.322
762	0.479	718	0.388	738	0.399	745	0.400
786	0.512	741	0.432	757	0.436	775	0.461
800	0.536	775	0.491	797	0.511	802	0.515
		797	0.521				

of $\pm 0.5~\rm cm^{-1}$ by measuring the resistance of the cells when filled with HgI₂ and CdI₂, respectively, the counductivities of these salts being taken from the literature (22 and 1 , respectively). The temperature was regulated by a chromel-alumel thermo-

couple to within ± 1 °C in a heater of a size sufficiently large for temperature gradients within the cell to be negligible. The conductivity of the systems was measured with a Wayne-Kerr bridge, model B 224.

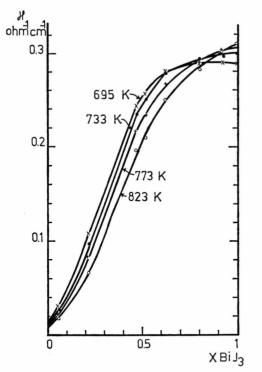


Fig. 2. Isotherms of the specific electric conductivity of molten HgI_9 - BiI_3 mixtures.

Results

The results of the measurements are presented in Tables I and II. Figures 2 and 3 show several specific conductivity isotherms. In the case of HgI₂-BiI₃ it is seen (Fig. 2) that there are slight negative deviations from additivity in the HgI2-rich composition range, whereas pronounced positive deviations appear in the Bil₃-rich composition range. As the temperature rises the negative deviations become more pronounced whereas the positive ones diminish and, on the average, the additivity is improved. In the case of BiI₃-CdI₂ (Fig. 3) positive deviations govern over the entire composition range. As the temperature increases there is a tendency towards negative deviations from additivity in the BiI3-rich composition region while the conductivity peak shifts to the CdI₂-rich side. Also in this case an increase in temperature somewhat improves the additivity.

Discussion

It is usually assumed that the electric current carriers in molten HgI₂ are mostly the HgI⁺ and HgI₃⁻ ions ^{21, 23, 24}, whereas in molten BiI₃ the carriers

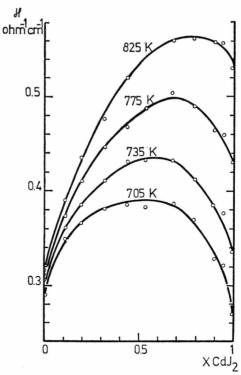


Fig. 3. Isotherms of the specific electric conductivity of molten BiI_8 -CdI, mixtures.

are mostly the ${\rm BiI_2}^+$ and ${\rm BiI_4}^-$ ions $^{17,\,25}$. In the vicinity of the melting point liquid ${\rm CdJ_2}$ has nearly the same conductivity as ${\rm BiJ_3}$ (Figure 3). As the temperature increases, however, its conductivity abruptly approaches that of ionic compounds. If the charge carriers in molten ${\rm CdI_2}$ are supposed to be the ${\rm CdI}^+$ and ${\rm CdI_3}^-$ ions, this means that the degree of dissociation of ${\rm CdI_2}$ into these ionic species sharply increases with rising temperature. The Grotthus mechanism might be confirmed in these melts if it were demonstrated, e.g. by NMR measurements, that a fast ion exchange ${\rm A}^- + {\rm ABA} = {\rm ABA} + \dot{\rm A}$ occurres.

The results presented in Figs. 2 and 3 may be interpreted qualitatively in terms of these concepts. In the composition region rich in HgI_2 , a salt which is little dissociated compared to BiI_3 , addition of BiI_3 would cause an increase in the dissociation of HgI_2 due to the possibility of occurrence of the ion exchange processes $BiI_4^- + HgI_2 = BiI_3 + HgI_3^-$ and $BiI_2^+ + HgI_2 = BiI_3 + HgI^+$. Because of the predominance of the properties of HgI_2 , ions in excess are removed by the reaction $HgI^+ + HgI_3^- = 2\,HgI_2$. Therefore a negative deviation of conductivity from

additivity appears. In the composition region rich in $\operatorname{BiI_3}$, which allows for the existence of a relatively large number of ions, an increase occurs in the degree of dissociation of $\operatorname{HgI_2}$ in analogy to that occurring in a weak electrolyte on dilution, which leads to a positive deviation of conductivity from additivity. The increase of temperature does not alter the type of deviation from additivity, since the molecular character of both components becomes more and more pronounced, but the additivity is somewhat improved (Figure 2).

In the BiI₃-CdI₂ system at temperatures close to the melting points the pure components have similar values of specific conductivity, and on their mixing an increase occurs in the degree of dissociation of one of the components in the other, hence the conductivity deviation from additivity is positive over the entire composition range (Figure 3). The in-

¹ L. F. Grantham and S. J. Yosim, J. Chem. Phys. 45, 1192 [1966].

² L. F. Grantham and S. J. Yosim, J. Phys. Chem. **72**, 762 [1968].

³ L. F. Grantham and S. J. Yosim, J. Phys. Chem. 67, 2506 [1963].

⁴ C. R. Boston, S. J. Yosim, and L. F. Grantham, J. Chem. Phys. **51**, 1669 [1969].

⁵ W Holzapfel and E. U. Franck, Ber. Bunsenges. physik. Chem. **70**, 1105 [1966]; W. L. Holzapfel, J. Chem. Phys. **50**, 4424 [1968].

⁶ M. V. Šušić and S. V. Mentus, 26-th Meeting of ISE, Baden near Wienna, September 1975.

- ⁷ J. Cueilleron and M. Charret, Bul. Soc. chim. France 7, 98 [1956]; D. Severin, Dissertation, Karlsruhe 1971.
- ⁸ N. N. Greenwood and N. J. Emeleus, J. Chem. Soc. 987 [1950].
- ⁹ G. V. Hevesy, Kgl. Danske Videnskab. Selskab. Mat. Fys. Medd. 3, 13 [1921].
- ¹⁰ A. K. Van Artsdalen and J. S. Yaffe, J. Phys. Chem. **59**, 118 [1955].
- ¹¹ H. Bloom, J. W. Knaggs, J. J. Molloy, and D. Welch, Trans. Faraday Soc. **49**, 1958 [1953].
- ¹² A. S. Dworkin, H. R. Bronstein, and M. A. Bredig, J. Phys. Chem. **67**, 2715 [1963].

crease of temperature affects the components differently; namely, it increases the degree of dissociation of CdI_2 , and decreases that of BiI_3 . Therefore the behaviour of this system approaches that of the HgI_2 -Bi I_3 system. Namely, it is noticed in Fig. 3 that in the BiI_3 -rich composition region at higher temperatures there is a tendency of the appearance of negative deviations from additivity. This tendency might be explained by a disappearance of CdI^+ and CdI_3^- ions in the composition region rich in BiI_3 , the molecular character becoming more and more pronounced, just as in the HgI_2 -Bi I_3 system. On the CdI_2 -side the existence of a large number of ions is allowed, hence the degree of dissociation of dissolved BiI_3 proceeds with increasing temperature.

These conclusions, drawn from the results of our conductometric measurements, call for a further verification by other methods.

- ¹³ A. G. Dudareva, G. A. Loveckaya, and Kiros Gladis, Zhurnal neorg. khim. 19, 803 [1974].
- ¹⁴ H. Bloom and J. A. Weeks, Trans. Faraday Soc. **67**, 1420 [1971].
- ¹⁵ E. F. Riebling and C. E. Erickson, J. Phys. Chem. **67**, 307 [1963].
- ¹⁶ K. Matiašovsky and V. Danek, J. Electrochem. Soc. **120**, 919 [1973].
- ¹⁷ F. W. Poulsen and N. J. Bjerrum, J. Phys. Chem. **79**, 15 [1975].
- ¹⁸ L. F. Grantham, J. Chem. Phys. 49, 3835 [1968].
- ¹⁹ C. R. Boston, L. F. Grantham, and S. J. Yosim, J. Electrochem. Soc. 117, 28 [1970].
- ²⁰ I. A. Izobekov and Nizhnik, Bull. Acad. Sci. URSS, Class Chim. 3, 189 [1936].
- ²¹ S. V. Mentus and M. V. Šušić, Z. Naturforsch. 30 a, 312 [1975].
- ²² J. O. M. Bockris, E. H. Crook, H. Bloom, and N. E. Richards, Proc. Roy. Soc. London A 255, 558 [1960].
- ²³ A. J. Darnell and W. A. McCollum, J. Chem. Phys. 55, 116 [1971].
- ²⁴ G. J. Janz and J. D. McIntyre, Ann. N. Y. Acad. Sci. 79, 761 [1960].